RI-F550 Multifunction Power Meter

User Manual

TABLE OF CONTENTS

1. Safety Instructions	1
2. Product description	1
2.1 Overview	1
2.2 Extend modules	1
2.3 Measurement	2
2.4 Real-time measurement	3
2.5 Energy metering and tariff meter reading	3
2.6 Power quality	6
2.7 Demand record	10
2.8 Event record	10
2.9 Help information	11
2.10 Extend module	11
3 Installation and wiring	15
3.1 Dimension	15
3.2 Installation	15
3.3 Wiring	16
3.4 Signal wiring diagram	17
4. Operation	18
4.1 Panel	18
5 Setup	19
5.1 Signs for keys and corresponding functions	19
5.2 Programming and setting menu	20
5.3 Example for programming operation	29
6. Communication	30
7. Technical specifications	31

1. Safety Instructions

The manufacturer shall not be held responsible for failure to comply with the instructions in this manual.

The equipment must be installed and serviced only by qualified personnel.

Never work alone.

Prior to any work on or in the equipment, isolate the voltage inputs and auxiliary power supplies, short the secondary of all CT, but never short the secondary of PT.

Always use a properly rated voltage sensing device to confirm that all power is off.

Risk of damaging device

- ◆ The voltage of the auxiliary power supply is beyond the rated range.
- ◆ The frequency of the power distribution system is beyond the rated range.
- ◆ The input polarity of the voltage or the current is wired improperly.

2. Product description

2.1 Overview

RI-F550 is equipped with electrical variable measurement, energy metering and power quality analysis functions. RI-F550 also can be extended with I/O modules for monitoring and controlling equipment at field, realizing system integration with different smart electricity distribution system and energy management system, and sharing monitoring data and energy data.

2.2 Extend modules

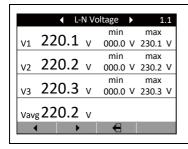
RI-F550 has two extension interfaces for connecting modules and expanding functions. Please pay attention to the following points when connecting modules to RI-F550.

- a) Two modules for one interface at most, and four modules for RI-F550 at most.
- b) Only one communication module can be connected to RI-F550. The communication modules are RI-A5ETNT, RI-A5PROF, RI-A5WIFI, RI-A5GPRS, RI-A5RS485, RI-A5MBUS, RI-A5RSBAC, RI-A5IPBAC, and RI-A5RS232. Two interfaces should be connected with different communication modules except for RI-A5PROF,

RI-A5RS485 and RI-A5RS232.

c) The arrangement of modules can be set according to user's requirements in compliance with a) and b). For example, four RI-A5DCDI modules, two RI-A5DCDI modules + one RI-A5RO5A module + one RI-A5GPRS modules; one RI-A5DCDI module + one RI-A5DCAO module + one RI-A5RS485 module.

Module type	Description	
RI-A5ACDI	2 AC digital input	
RI-A5DCDI	4 digital inputs	
RI-A5RO5A	2 relay outputs	
RI-A5DCAI	2 analog inputs: mA	
RI-A5PT100	2 analog inputs: PT100	
RI-A5DCAO	2 analog outputs: mA	
RI-A5ETNT	Ethernet: Modbus/TCP	
RI-A5PROF	DB9, Profibus-DP	
RI-A5WIFI	WIFI: Modbus/TCP	
RI-A5GPRS	GPRS: Modbus/TCP, SMS	
RI-A5RS485	RS485, Modbus-RTU	
RI-A5MBUS	M-Bus communication	
RI-A5RSBAC	BACnet/MSTP communication	
RI-A5IPBAC	BACnet/IP communication	
RI-A5RS232	RS232, Modbus-RTU	


2.3 Measurement

The following list shows variables which can be measured by RI-F550 including relative variables calculated from basic electrical parameters.

Measurement variable	Instant	Max	Min	Demand	Sum	Unit
V1/V2/V3	•	•	•	_	_	[V, kV]
V12/V23/V31	•	•	•	_	_	[V, kV]
11/12/13	•	•	•	•	_	[A, kA]

F	•	•	•	_	_	[Hz]
P1/P2/P3	•	_	_	-	-	[kW, MW, GW]
Р	•	•	•	•	_	[kW, MW, GW]
Q1/Q2/Q3	•	_	_	_	_	[kvar, Mvar, Gvar]
Q	•	•	•	•	_	[kvar, Mvar, Gvar]
S1/S2/S3	•	_		1	1	[kVA, MVA, GVA]
S	•	•	•	•	_	[kVA, MVA, GVA]
PF1/PF2/PF3	•	_	_	_	_	_
PF	•	•	•	_	_	_
EP+/EP-	_	_	_	_	•	[kWh, MWh, GWh]
EQ1/EQ2/EQ3/EQ4	_	_	1	1	•	[kvarh, Mvarh, Gvarh]
THDV1/THDV2/THDV3	•	_	_	_	_	[%]
THDI1/THDI2/THDI3	•	_	_	_	_	[%]
Harmonic RMS-U (1 \sim 63rd)	•	_	_	_	_	[%]
Harmonic RMS-I (1∼63rd)	•	_	_	_	_	[%]
Unbalance-U	•	_	_	_	_	[%]
Unbalance-I	•	_	_		_	[%]

2.4 Real-time measurement

The left picture shows three phase instantaneous voltage, average voltage, max voltage and min voltage. Click to check other pages, press to return to main interface.

2.5 Energy metering and tariff meter reading

This meter has excellent energy metering functions as follows:

·Total bi-direction active and reactive energy metering

- ·Phase separated bi-direction active and reactive energy metering
- ·Fundamental energy metering.
- ·Four-quadrant reactive energy metering.
- ·Apparent energy metering.
- ·Tariff energy metering

The meter shows primary value. Primary value is equal to the secondary value multiplied by voltage or current transformer ratio. Secondary value is the reference to all the energy. The smallest resolution ratio of secondary value is 1Wh or 1varh. The smallest resolution ratio of energy shown on meter is 0.01kWh or 0.01kvarh.

The storage range of energy is secondary energy 4294967295 Wh, and the display range of energy is primary energy 999999999999999 kWh (99.9 billion). The data will not exceed the range if the meter is in its mean time between failures. Users can clear the energy data after entering correct password.

Tariff energy: the meter has two sets of tariffs with four kinds of rates in twelve time zones. It starts energy metering in one time zone according to digital input status.

2.5.1 Tariff energy

1 Rate number

Rate number is used to indicate the present tariff of working meter. T 1 indicates Tip rate; T2 indicates Peak rate; T3 indicates Flat rate; T4 means valley rate.

2)Time period

One day can be divided into 12 time periods at most in the meter. The time period must be continuous, which means the end time of the first time period is the start time of the second time period.

3 Rate schedule

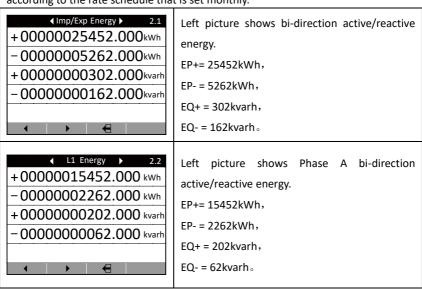
Different rate schedules can be preset in the meter. They can perform different tariffs in the specified time period. Up to 4 rates can be preset. During programming, the rate schedule number is used to indicate what tariff that the meter performs. 1 indicates the first-rate schedule.

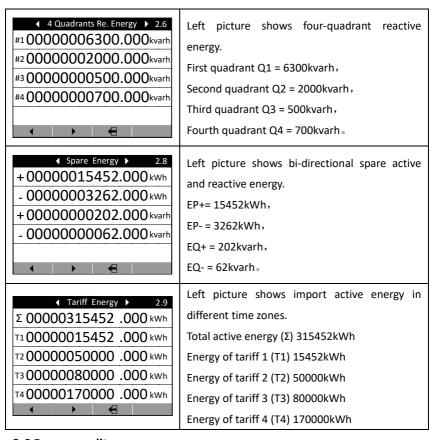
(4) Holiday

Holiday includes regular holidays (22 days) and irregular holidays (60 days), a total

of 82 days. Regular holidays mean the same annual holiday that nation has stipulated, such as January 1st, May 1st, etc. It can be set according to the requirement. Irregular holiday means annual holidays stipulated by different nations, such as Spring Festive (February 9th, 2005). It can be set according to the requirement. The tariff for a holiday can be any one of the four tariffs.

(5) Weekly tariff

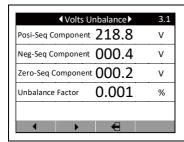

Each of the four rates is available for seven days a week.


6 Monthly tariff

Each of the four rates is available for each month.

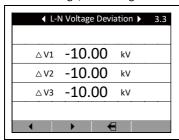
(7) Priority order of tariff

There are two modes to perform tariffs: holiday tariff and monthly tariff. In holiday tariff mode, the holiday tariff will be performed if the day is holiday, otherwise the weekly tariff will be performed. In monthly tariff mode, it will be performed according to the rate schedule that is set monthly.

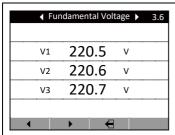


2.6 Power quality

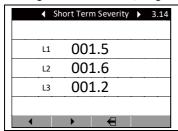
RI-F550 can monitor and analyze power quality of gird and measure the following variables:


Three phase voltage and current sequence component and unbalance

Electrical variables in three phase system can be divided into positive sequence component, negative sequence component and zero sequence component according to symmetrical component method. If the electric system is in normal operation mode, the ratio between negative sequence component RMS value and positive sequence component RMS value is defined as three phase unbalance of an electrical variable.


Left picture shows three phase voltage and current sequence component and unbalance.

Phase voltage, line voltage and frequency deviation.

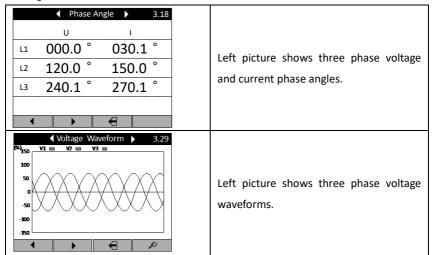

Left picture shows three phase voltage deviation.

Fundamental wave voltage/ current, harmonic voltage/current, fundamental wave active power/reactive power/apparent power, fundamental wave power factor.

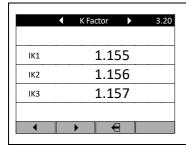


Left picture shows three phase voltage fundamental wave content.

Voltage short-term flicker, long-term flicker and fluctuation

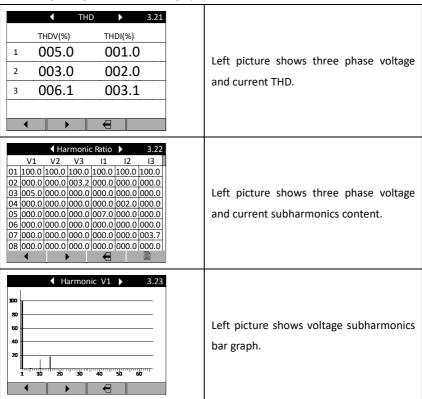

Left picture shows voltage short-term flicker value.

Left picture shows voltage fluctuation value.

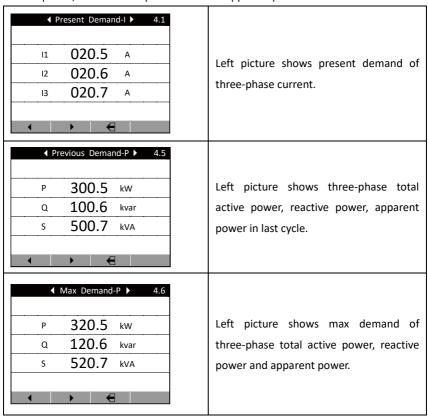

Voltage and current phase angle

RI-F550 shows three phase voltage and current phase angles. L1 voltage angle is defaulted as 0°. Other phase angles are shown phase difference relative to L1 voltage. Unit: °

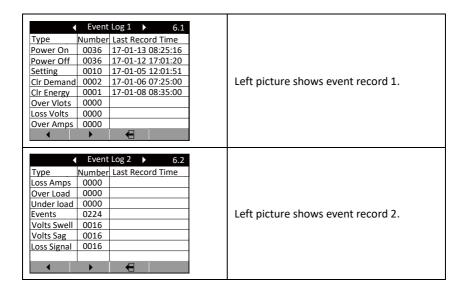
Voltage crest factor, current K factor


◀ (Crest Factor 3.19	
UKPR1	1.414	Left picture shows three phase volta
UKPR2	1.415	
UKPR3	1.416	crest factors.
•	→	

Left picture shows current K factor.


RI-F550 can measure harmonic content of grid. The detailed functions are as follows:

- ■Measuring 2nd to 63rd harmonics.
- ■Showing voltage and current bar graph.


2.7 Demand record

RI-F550 has six independent demand recording channels to measure and record max demand, present demand and previous demand of three phase current, total active power, total reactive power and total apparent power.

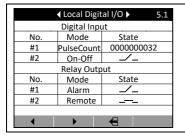
2.8 Event record

Event record includes the total times and latest occurrence time of power on record, parameter modification record, over current record and so on.

2.9 Help information

The page shows the software version and module status.

Ab	out
Firmware Version	1014.192B
Display Version	1001.169A
Meter Run Time	0000648427 s
Meter Load Time	0000324557 s
Tx1 Counter	0000029220
Rx1 Counter	0000029230
Tx2 Counter	0000000000
Rx2 Counter	0000000000
System Staus	Voltage Err
	-


The left picture shows user help information. The last column shows present status of system. "OK" means the system operates normally. "Voltage Err" means there is voltage fault.

2.10 Extend module

RI-F550 has two extension interfaces for connecting modules and expanding functions.

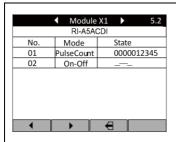
2.10.1 Digital input and relay output of RI-F550

RI-F550 has two digital inputs and two relay outputs.

Left picture shows digital input and relay output information of RI-F550.

2.10.2 Digital input (RI-A5ACDI, RI-A5DCDI)

RI-A5ACDI module has digital input adopting wet contact mode to measure AC 220V signal.


RI-A5DCDI module has digital input adopting dry contact mode which gets power supply from inside of meter and with no need for external power supply.

Digital input supports three working modes:

Status monitoring: the meter receives the status of terminal node and shows it on the window. It also shows the newest status immediately when the status of terminal node changes.

Pulse counting: the meter receives and counts the number of pulses from terminals. It adds by one when it receives one pulse.

Spare energy: a meter starts accumulating spare energy and stops accumulating total energy at the same time when it detects that the digital input becomes closed.

Left picture shows working modes of two digitals inputs are synchronous demand and status monitoring. No. 2 digital input receives signal.

The left pictures shows workings modes of four digital inputs. No. 1 digital input is in pulse counting mode, and the pulse number is 32; No. 2 is spare energy, No. 3 and No. 4 digital inputs are in status monitoring mode, No.4 digital input has signal input.

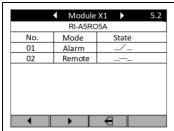
2.10.3 Relay output (RI-A5RO5A)

RI-F550 has two relay outputs. RI-A5RO5A module is used to add more relay outputs to the meter.

RI-F550 relay outputs have two working modes: remote control and off-limit alarm.

RI-A5RO5A module relay outputs have two working modes: remote control and off-limit alarm. Working mode, alarm item and alarm range of each relay output can be set in programming.

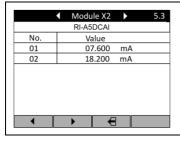
As for detailed information about relay output setting, please refer to Appendix 2.


Notice:

Remote control

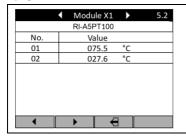
If user needs to remotely control relay output, please set the working mode as "Remote". Set delay as electrical level mode or set delay time as N * 100ms.

Off-limit alarm


Set relay output as "Alarm" mode, "Mode" is used to select an electrical variable, "Delay" is used to set alarm delay time, "Value" is used to set alarm limit value, "Reset" is used to set alarm recovery threshold value for electrical variable.

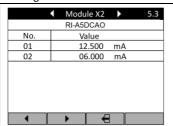
Left picture shows RI-A5RO5A status information. No. 1 is in off-limit alarm mode, No. 2 is in remote control mode.

2.10.4 Analog input module (RI-A5DCAI)


RI-A5DCAI module is used to measure 4~20mA signal. The measurement display page is shown as follows,

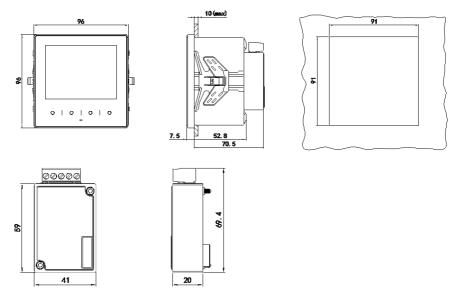
Left picture shows DC analog input value. No. 1 input 7.6mA, No. 2 input 18.2mA.

2.10.5 Analog input module (RI-A5PT100)


RI-A5PT100 module is used to measure PT100 signal. The measurement display page is shown as follows,

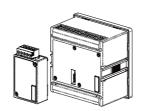
Left picture shows PT100 input value. No.1 input temperature is 75.5 $^{\circ}$ C, No.2 input temperature is 27.6 $^{\circ}$ C.

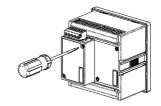
2.10.6 Analog output module (RI-A5DCAO)


Analog output module can transfer instantaneous electrical variables to DC current signal output. If analog output module is connected to meter, the corresponding display page will be shown on meter. The current value shown in the page is theoretical output value in present status. Analog output item and range can be set through meter.

Left picture shows analog output theoretical value. No. 1 output 12.5mA, No. 2 output 6mA.

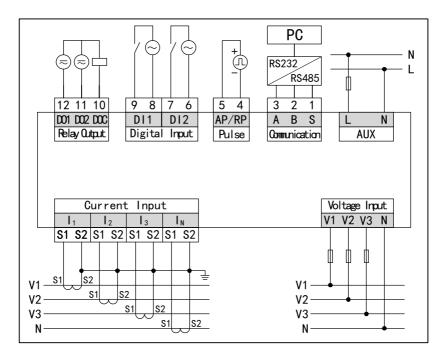
3 Installation and wiring


3.1 Dimension



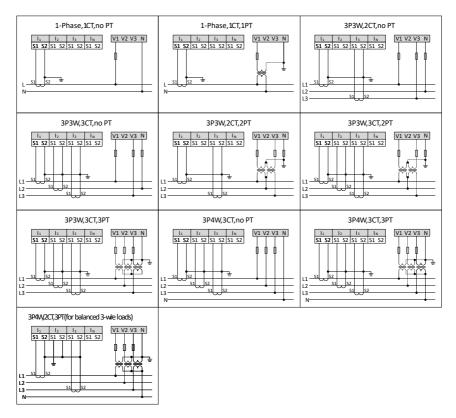
3.2 Installation

- 1) Choose the right place on the fixed distribution cabinet for cutout by size 91×91mm.
- 2) Take off the supporting clips of the meter.
- 3) Insert the meter into the cutout.
- 4) Insert and push the supporting clips to fix the meter.



3.3 Wiring

Typical wiring



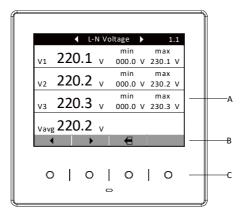
Note:

Auxiliary power supply: AC/DC (80 \sim 270) V

Rated current of fuse: 0.5A

3.4 Signal wiring diagram

Wiring instruction:


- (a) External wiring method must be the same as the inner wiring method of the meter. Otherwise, the measured data will be incorrect.
- (b) Voltage and current signals must be AC signals. Please do not connect DC signals to input terminals.
- (c) Voltage input: make sure the input voltage is not higher than the rated voltage of the meter, otherwise, please connect external PT to the meter. If external PT is adopted, the accuracy of meter will depend on the accuracy of external PT. Please make sure the accuracy of external PT is equal to or better than that of meter. For

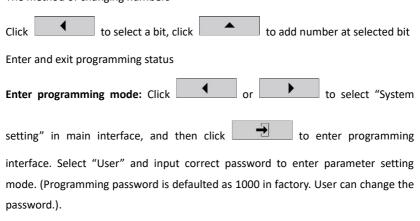
your convenient maintenance, please adopt wiring terminal row.

- (d) Current input: make sure the input current is not higher than the rated current of the meter, otherwise, please connect external CT to the meter. If external CT is adopted, the accuracy of meter will depend on the accuracy of external CT. Please make sure the accuracy of external CT is equal to or better than that of meter. If there is more than one meter connected to the CT, please connect them in serial. Before removing the current input wires of the meters, make sure to cut off the first loop of CT or short connect its second loop. For your convenient maintenance, please adopt wring terminal row.
- (e) Make sure voltage and current of three phases correspond to each other, that means the phase sequence and direction are same. Otherwise, the numbers and signals will be incorrect (power and energy).

4. Operation

4.1 Panel

A: Display window B: Function indication for keys C: Touch type keys


5 Setup

5.1 Signs for keys and corresponding functions

Users can set parameters for meter through keys.

Sign	Function		
	Add number at selected bit		
•	Move downward, switch to next page, change parameter		
•	Move left to change or show data/ switch data bit		
•	Move right to change or show data		
€	Return to Main interface directly, return to upper-level		
	menu/cancel modification		
→	Enter selected item		
4	Confirm		
P	Zoom display image		
	Edit		
	Next page		
	Ineffective key		

The method of changing numbers

Exit programming mode: return to first level of menu at first, and then click

The meter will indicate whether to save modified data or not at this step. If "Yes" is selected, the meter will save modified data and return to main interface; if "No" is selected, the meter will cancel modified data and return to main interface.

5.2 Programming and setting menu

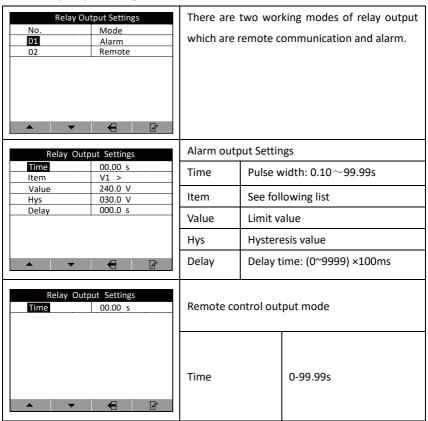
Programming and setting menu adopt hierarchical mode.

5.2.1 Basic parameter setting

	Backlight	00s-99 min 00-backlight constant on
	Bright	1-5
	Language	English
	Password	0001-9999
Basic Settings	Default	Set first the display interface
BackLight 10 Min Bright Level 1	display	after power on. This interface
Language English Password 0001		can be set as U, I, P, E, THD,
Default Display L-N Voltage		Waveform, Demand and
Tariff Mode Month Tariffs Impulse 005000		Max/Min
	Tariff Mode	Set tariff mode.
		This Can be set as Month Tariffs
		and Week (Holiday) Tariffs.
	Impulse	0~999999

5.2.2 Signal input setting

		Wiring method	1P2W,3P3W,3P4W
		PT secondary value	0-690V
Signal	Inputs		
Wiring	3P4W	PT primary value	0-999999V
PT Secondary	0100 V		
PT Primary	010000 V	CTdl	
CT Secondary	0001 A	CT secondary value	0-6A
CT Primary	000600 A		
In Secondary	0001 A	CT primary value	0.000000
In Primary	000600 A	er primary value	0-99999A
A V		Neutral current primary value	0-99999A
		Neutral current	0-6A
		secondary value	0 0


5.2.3 Communication setting

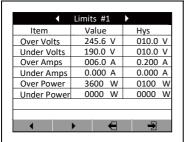
		Address	1~247
Comm	Settings		
Address	002		
Baudrate	9600 bps	Baud rate	1200~38400bps
Data Format	N.8.1	Bada rate	1200 30400bp3
Protocol	Modbus-RTU		
		Check mode	E81, O81,N81,N82
A •	€ 2	Communication protocol	Modbus-RTU

5.2.4 Digital input setting

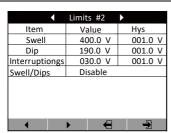
Digit	al Input Settings	
No. 01 02	Mode PulseCount On-Off	There are three working modes of digital input. Pulse counting Status monitoring Spare energy

5.2.5 Relay output setting

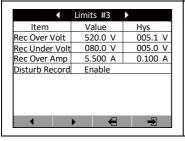
Electrical variables for alarm are shown in the following list:


Item	Format	Instruction	
OFF		Off	
DI	0/1	Switching linkage action, relay acts according to digital input status. If it is 0, relay closes when digital input is 0; if it is 1, relay closes when digital input is 1.	
X4.PT L	ххх.х ℃	X4 low temperature alarm for any loop	

X4.PT H		X4 high temperature alarm for any loop
X4.PT2L		X4 low temperature alarm for second loop
X4.PT2H		X4 high temperature alarm for second loop
X4.PT1L		X4 low temperature alarm for first loop
X4.PT1H		X4 high temperature alarm for first loop
X3.PT L		X3 low temperature alarm for any loop
X3.PT H		X3 high temperature alarm for any loop
X3.PT2L		X3 low temperature alarm for second loop
X3.PT2H		X3 high temperature alarm for second loop
X3.PT1L		X3 low temperature alarm for first loop
X3.PT1H		X3 high temperature alarm for first loop
X2.PT L		X2 low temperature alarm for any loop
X2.PT H		X2 high temperature alarm for any loop
X2.PT2L		X2 low temperature alarm for second loop
X2.PT2H		X2 high temperature alarm for second loop
X2.PT1L		X2 low temperature alarm for first loop
X2.PT1H		X2 high temperature alarm for first loop
X1.PT L		X1 low temperature alarm for any loop
X1.PT H		X1 high temperature alarm for any loop
X1.PT2L		X1 low temperature alarm for second loop
X1.PT2H		X1 high temperature alarm for second loop
X1.PT1L		X1 low temperature alarm for first loop
X1.PT1H		X1 high temperature alarm for first loop
dmd. S <		Present demand S <
dmd. S >		Present demand S >
dmd. Q <	xxxx	Present demand Q <
dmd. Q >	****	Present demand Q >
dmd. P <		Present demand P<
dmd. P >		Present demand P>


dmd. I > Present	demand I < demand I > demand I3<	
dmd. I3 < Present	demand I3<	
<u> </u>		
dmd. I3 > x.xxx Present	1 110	
	demand 13>	
dmd. I2 < _A Present	demand I2<	
dmd. I2 > Present	demand I2>	
dmd. I1 < Present	demand I1<	
dmd. I1 > Present	demand I1>	
THDi < Current	harmonic distortion rate low alarm	
THDi > Current	harmonic distortion rate high alarm	
	harmonic distortion rate low alarm	
THDv > Voltage	harmonic distortion rate high alarm	
lunb < Current	unbalance low alarm	
lunb > Current	unbalance high alarm	
	unbalance low alarm	
Vunb > Voltage	unbalance high alarm	
F < xx.xx Grid free	quency low alarm	
F > Hz Grid free	quency high alarm	
	wer factor low alarm	
PF > X.XXX Total por	wer factor high alarm	
S < xxxx Total app	parent power low alarm	
S > _VA Total app	parent power high alarm	
Q < xxxx Total rea	active power low alarm	
Q > _var Total rea	active power high alarm	
P < xxxx Total act	Total active power low alarm	
P > _W Total act	ive power high alarm	
	uence current low alarm	
lo > X.XXX Zero-sec	uence current high alarm	
	average value low alarm	

lavg <		Current average value high alarm
l <		One of three phase currents low alarm
l>		One of three phase currents high alarm
13 <		I3 low alarm
13 >		I3 high alarm
12 <		I2 low alarm
12 >		12 high alarm
l1 <		I1 low alarm
11 >		I1 high alarm
VIIavg <		Line voltage average value low alarm
VIIavg >		Line voltage average value high alarm
Vlnavg <		Phase voltage average value low alarm
Vlnavg >		Phase voltage average value high alarm
VII <		One of three line-voltages low alarm
VII >		One of three line-voltages high alarm
V31 <		V31 voltages low alarm
V31 >		V31 voltages high alarm
V23 <		V23 voltages low alarm
V23 >	xxx.x	V23 voltages high alarm
V12 <	_V	V12 voltages low alarm
V12 >		V12 voltages high alarm
Vln <		One of three phases' voltages low alarm
Vln >		One of three phases' voltages high alarm
V3 <		V3 voltages low alarm
V3 >		V3 voltages high alarm
V2 <		V2 voltages low alarm
V2 >		V2 voltages high alarm
V1 <		V1 voltages low alarm
V1 >		V1 voltages high alarm

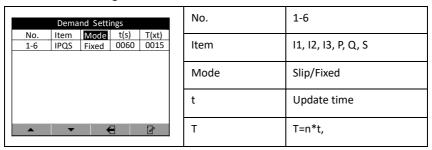

5.2.6 Limit value setting

Used for setting off-limit alarm for voltage, current and power.

Used for setting voltage swell, sag and interruption.

Used for setting over voltage, under voltage and over current in fault wave record.

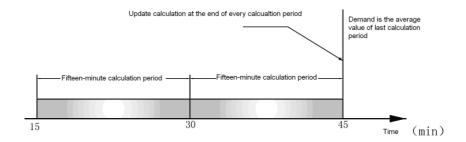
5.2.7 Clear synchronous setting

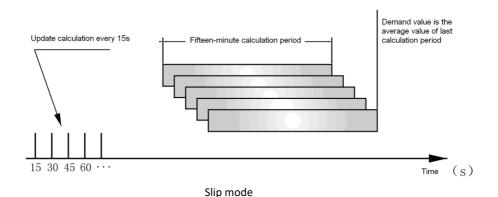

Reset Data			
Reset Energy			
Reset Demand			
Reset Limit			
Res.SystemEvent			
Reset SOE			
Reset Alarm			
Res.LoadRecord			
Res.PulseCounter			
▲ ▼	€ 2		

Parameters of energy, demand, Max./Min. value and Event are cleared in this interface. If the parameters are cleared, the relative value will be zero and not be reset; If energy is cleared, a piece of energy clearance SOE is made.

5.2.8 Time setting and meter reading time

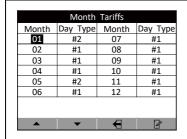
		System time	Setup real-timeclock
Tim	Time Settings		
System Time	2017-01-16-09:10:37		
Meter Reading	20**-**-01-00:00:00		
DST	Off	Meter	
DST Zone	00		
		reading	
		time	
		time	
_ ▲		DST	Daylight Saving Time Mode
		DST Zone	Daylight Saving Time Zone


5.2.9 Demand setting

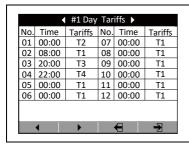

There are two demand measurement modes which are slip and fixed. The relative time parameters are set as t (updating time) and T (time zone).

Slip: meter calculates average demand during latest T minutes every t second, tests and records the value, automatically reads the demand every month.

Fixed: meter calculates average demand during latest T minutes after T minutes, tests and records the value, automatically reads the demand every month.



Fixed mode


Note: calculation method in upper pictures takes 15min as example.

5.2.10 Monthly tariff setting

RI-F550 has two sets of daily tariffs. One month can be selected to follow one set of daily tariffs. Daily tariffs can be set in daily tariff page.

5.2.11 Daily tariff setting

RI-F550 has two sets of daily tariffs. 24 hours a day are divided into 12 twelve zone. Each time zone can be selected with one of four kinds of tariffs.

5.3 Example for programming operation

Suppose the wiring method of meter is three phase four wire and primary voltage is 10KV, change the wiring method to be three phase three wire and change primary voltage to be 6000V, the programming operation process is as follows,

6. Communication

Meter is defaulted to be equipped with one communication, RS-485 interface, Modbus-RTU protocol. It also can be extended with one communication by connecting with a module.

7. Technical specifications

Electric Characteristics				
Accuracy	Voltage and current		0.2%	
	Power, Po	wer Factor	0.2%	
	Frequency		±0.01Hz	
	Active power		IEC62053-22, class 0.2S	
	Reactive power		IEC62053-23, class 2	
Data update	rate		1s	
	Wiring mode		1P2W、3P3W、3P4W	
		Rated value	400 VAC L-N (690 VAC L-L)	
	Voltage	Overload	1.2Vln	
		Impedance	>1ΜΩ	
la a d		Rated value	1A or 5A	
Input		Overland	Continuous: 1.2In	
	Current	Overload	Instantaneous: 10In/5s	
		burden	<0.1VA	
		Rated value	<20mΩ	
	Grid frequency		(45∼65) Hz	
Auxiliary	Working range		AC/DC (80~270) V	
supply	consumption		≤ 10VA	
Energy pulse output			1 optocoupled output, pulse width (80±20%) mS	
Digital input			AC220V input, isolation: 2000VAC	
Relay output			Contact rated at AC 250V/5A or DC 30V/5A	
			Isolation: 2500VAC	
Communications				
RS485 port			Modbus-RTU, 2-wire, up to 38400bps	
Mechanical Characteristics				
IP index	IP65 (fro	nt panel)and I	P20(meter body)	
Dimensions 96×96×55mm				

Environmental Characteristics	
Operating temperature	(-10∼60) ℃
Storage temperature	(-25∼70) ℃
Relative humidity	(5∼95) % (no gel)
Insulation	IEC 61010-1
Electromagnetic Compatibility	
Immunity to electrostatic discharge	IEC 61000-4-2-Level III
Immunity to radio-frequency field	IEC 61000-4-3- Level III
Immunity to electrical fast transients/bursts	IEC 61000-4-4- Level IV
Immunity to impulse waves	IEC 61000-4-5- Level IV
Immunity to conducted disturbances	IEC 61000-4-6- Level III
Immunity to power frequency magnetic fields	IEC 61000-4-8- Level III
Immunity to voltage dips and short interruptions	IEC 61000-4-11- Level III
Module	
RI-A5ACDI	2 AC digital input
RI-A5DCDI	4 digital inputs
RI-A5RO5A	2 relay outputs
RI-A5DCAI	2 analog inputs: mA
RI-A5PT100	2 analog inputs: PT100
RI-A5DCAO	2 analog outputs: mA
RI-A5ETNT	RJ45, Modbus/TCP
RI-A5PROF	DB9, Profibus-DP
RI-A5WIFI	WIFI: Modbus/TCP
RI-A5GPRS	GPRS: Modbus/TCP, SMS
RI-A5RS485	RS485, Modbus-RTU
RI-A5MBUS	M-Bus communication
RI-A5RSBAC	BACnet/MSTP communication
RI-A5IPBAC	BACnet/IP communication
RI-A5RS232	RS232, Modbus-RTU

RAYLEIGH INSTRUMENTS LIMITED
Cutlers Road
South Woodham Ferrers
Chelmsford
Essex
CM3 5WA
UK

The information in this document is subject to change without further notice.