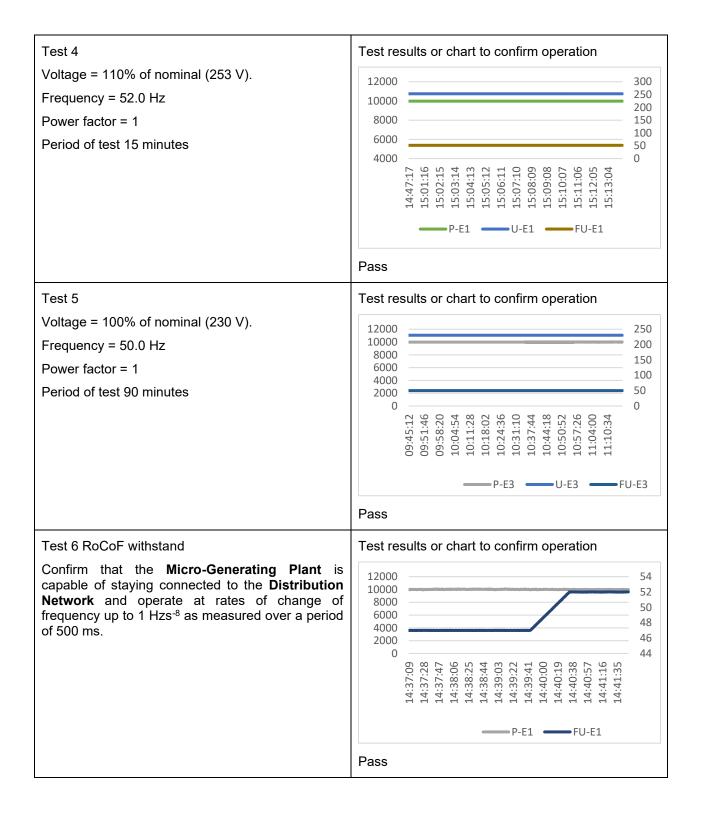
Form C: Type Test Verification Report

All Micro-generators connected to the **DNO Distribution Network** shall be **Fully Type Tested**. This form is the **Manufacturer**'s declaration of compliance with the requirements of EREC G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA) Type Test Register.


If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA Type Test Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the system reference), and this form does not need to be submitted.

Manufacture	e r's referenc	ce number	RI-Energyf	RI-Energyflow-P3-Series 15 -10.00kW				
Micro-gener	ator techno	logy	Grid-tied photovoltaic inverter					
Manufacture	e r name		Rayleigh Ir	struments LTD				
Address				1-5 Raytel House, Cutlers road, South Woodham Ferrers, Chelmsford,Essex. England				
Tel	0124542850	00		Fax	01245 428509			
E-mail	Sales@rayl	eigh.com		Web site	www.Rayleigh.com			
Connection			Option					
Registered Capacity , use separate sheet if more than one connection option.			kW single phase, single, split or three phase system					
		10	kW three phase					
			kW two phases in three phase system					
			kW two phases split phase system					
Energy stora capacity for I Storage dev	Electricity		kWh					
Fully Type stated in this	Tested refe document,	rence number	will be mar ent to site an	ufactured and to d that no site mo	oplied by the company with the above ested to ensure that they perform as odifications are required to ensure that			
Signed		On behalf of Rayleigh Instruments Lir		Rayleigh Instruments Limited				
Note that tes house.	sting can be	done by the	Manufactur	er of an individu	ual component or by an external test			


Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Operating Range: This test should be carried out as specified in A.1.2.10.

Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

ENA Engineering Recommendation G98 Issue 1 Amendment 6 2021

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

`		,				,			
			Mic	ro-genera	itor teste	d to BS	S EN	61000-3-2	
Micro-		or rating rpp)	per phase		3.33			kW	
measu harmor	rements a nics are n	k this box three pha h phase, ts for eac	ses. If the please						
Harm onic	J				% of Reg Capaci	-	d		
	Measured Value MV in Amps				Measured Value MV in Amps			Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.102	0.101	0.101	0.103	0.104	0.103	3	1.080	
3	0.071	0.074	0.071	0.073	0.076	0.073	3	2.300	
4	0.057	0.056	0.059	0.056	0.058	0.058	3	0.430	
5	0.172	0.174	0.174	0.171	0.172	0.172	2	1.140	
6	0.007	0.009	0.008	0.008	0.008	0.007	7	0.300	
7	0.026	0.025	0.022	0.023	0.021	0.02	1	0.770	
8	0.005	0.004	0.004	0.004	0.004	0.004	1	0.230	
9	0.035	0.033	0.032	0.033	0.034	0.033	3	0.400	
10	0.031	0.033	0.031	0.031	0.031	0.03	1	0.184	
11	0.008	0.010	0.009	0.010	0.007	0.007	7	0.330	
12	0.018	0.019	0.018	0.017	0.016	0.018	3	0.153	
13	0.051	0.056	0.056	0.049	0.047	0.052	2	0.210	
14	0.018	0.018	0.019	0.018	0.018	0.017	7	0.131	
15	0.009	0.010	0.008	0.010	0.010	0.00	9	0.150	
16	0.019	0.020	0.020	0.018	0.018	0.019	9	0.115	

¹ See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

		1			- 1		1	1	
17	0.042	0.042	0.042	0.043	0.043	0.043		0.132	
18	0.007	0.008	0.010	0.008	0.009	0.010		0.102	
19	0.023	0.022	0.021	0.022	0.023	0.022		0.118	
20	0.010	0.011	0.013	0.011	0.012	0.012		0.092	
21	0.004	0.005	0.006	0.007	0.006	0.005		0.107	0.160
22	0.007	0.007	0.006	0.006	0.007	0.007		0.084	
23	0.012	0.015	0.013	0.014	0.013	0.013		0.098	0.147
24	0.003	0.003	0.004	0.004	0.005	0.004		0.077	
25	0.010	0.010	0.010	0.010	0.009	0.009		0.090	0.135
26	0.002	0.003	0.003	0.003	0.003	0.002		0.071	
27	0.005	0.004	0.004	0.004	0.003	0.005		0.083	0.124
28	0.006	0.005	0.005	0.005	0.005	0.005		0.066	
29	0.007	0.008	0.007	0.007	0.007	0.008		0.078	0.117
30	0.001	0.002	0.001	0.001	0.001	0.002		0.061	
31	0.009	0.007	0.008	0.007	0.008	0.008		0.073	0.109
32	0.004	0.004	0.004	0.003	0.004	0.005		0.058	
33	0.005	0.004	0.003	0.004	0.004	0.005		0.068	0.102
34	0.003	0.002	0.003	0.002	0.003	0.003		0.054	
35	0.007	0.007	0.007	0.006	0.008	0.006		0.064	0.096
36	0.002	0.002	0.002	0.001	0.002	0.001		0.051	
37	0.003	0.003	0.002	0.003	0.003	0.003		0.061	0.091
38	0.003	0.002	0.002	0.004	0.001	0.002		0.048	
39	0.003	0.002	0.002	0.002	0.002	0.002		0.058	0.087
40	0.001	0.000	0.000	0.001	0.000	0.000		0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Additional comments:

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is 0.4 Ω for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

Test start date	5 September.,2022			Test end date	nd 5 September.,2022				
Test location	Suzhou I	National	Hi-Tech D	istrict, Suzhc	ou, China.				
	Starting			Stopping			Running		
	d(max)	d(c)	d(t)	d(max)	d(c)	d(t)	Pst	Plt 2 hours	
Measured Values at test impedance	0.44 %	0.12 %	0%	0.52%	0.12%	0%	0.19	0.16	
Normalised to standard impedance	0.44 %	0.12 %	0%	0.53%	0.12%	0%	0.19	0.16	
Normalised to required maximum impedance	0.44 %	0.12 %	0%	0.52%	0.13%	0%	0.19	0.16	
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65	

The test date and location must be declared.

Test Impedance	R	0.24	Ω	Х	0.15	Ω
Standard Impedance	R	0.24 * 0.4 ^	Ω	Х	0.15 * 0.25 ^	Ω
Maximum Impedance	R	0.24	Ω	Х	0.15	Ω

*Applies to three phase and split single phase **Micro-generators**. Delete as appropriate.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate.

Power quality – DC injection: This test should be carried out in accordance with A 1.3.4 as applicable.

The % **DC** injection ("as % of rated AC current" below) is calculated as follows:

% **DC** injection = Recorded **DC** value in Amps / base current

where the base current is the **Registered Capacity** (W) / 230 V. The % **DC** injection should not be greater than 0.25%.

Test power level	20%	50%	75%	100%
Recorded DC value in Amps	0.024	0.028	0.031	0.026
as % of rated AC current	0.15%	0.18%	0.19%	0.16%
Limit	0.25%	0.25%	0.25%	0.25%

Power Quality – Power factor: This test shall be carried out in accordance with A.1.3.2 and A.2.3.2 at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within ±1.5% of the stated level during the test.

	216.2 V	230 V	253 V
Measured value	0,996	0,999	0,9981
Power Factor Limit	>0.95	>0.95	>0.95

(Inverter con	• •	A.2.2.3 (Synchronous). Fo	ed out in accordance with Annex A1 A.1.2.3 or trip tests, frequency and time delay should					
Function Setting Trip test "No trip tests"								

ENA Engineering Recommendation G98 Issue 1 Amendment 6 2021

	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.41Hz	20.013s	47.7 Hz 30 s	no trip
U/F stage 2	47 Hz	0.5 s	46.95Hz	0.516s	47.2 Hz 19.5 s	no trip
					46.8 Hz 0.45 s	no trip
O/F stage 1	52 Hz	0.5 s	52.07Hz	0.514s	51.8 Hz 120.0 s	no trip
					52.2 Hz 0.45 s	no trip

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"			
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip		
U/V	184 V	2.5 s	182.1V	2.49s	188 V 5.0 s	no trip		
					180 V 2.45 s	no trip		
O/V stage 1	262.2 V	1.0 s	264.6V	1.02S	258.2 V 5.0 s	no trip		
O/V stage 2	273.7 V	0.5 s	275.3V	0.514S	269.7 V 0.95 s	no trip		
					277.7 V 0.45 s	no trip		
Ph2	Ph2							
Function Setting			Trin test		"No trip tests"			

Function	Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V	184 V	2.5 s	182.9V	2.49s	188 V 5.0 s	no trip	
					180 V 2.45 s	no trip	
O/V stage 1	262.2 V	1.0 s	265.1V	0.989S	258.2 V 5.0 s	no trip	

O/V stage 2	273.7 V	0.5 s	275.1V	0.512S	269.7 V 0.95 s	no trip		
					277.7 V 0.45 s	no trip		
Ph3								
Function	Setting		Trip test		"No trip tests"			
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip		
U/V	184 V	2.5 s	183.6V	2.52s	188 V 5.0 s	no trip		
					180 V 2.45 s	no trip		
O/V stage 1	262.2 V	1.0 s	264.7V	1.011S	258.2 V 5.0 s	no trip		
O/V stage 2	273.7 V	0.5 s	275.4V	0.518S	269.7 V 0.95 s	no trip		
					277.7 V 0.45 s	no trip		

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Loss of Mains test: For PV **Inverter**s shall be tested in accordance with BS EN 62116. Other **Micro-generators** should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels. ²
To be carried out at three output power levels with a tolerance of plus of finitids 570 in rest rower levels

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	N/A	N/A	N/A	N/A	N/A	N/A

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

² See the note in A.2.2.4 if the suggested loading levels are below the minimum stable operating level. If alternative loading levels are chosen, the level should be indicated on the test form and the reason for not testing at 10%/55% of **Registered Capacity** should be stated. The additional comments box at the end of the loss of mains test sheet can be used for this.

Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1 fuse removed	N/A	N/A	N/A	N/A	N/A	N/A
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2 fuse removed	N/A	N/A	N/A	N/A	N/A	N/A
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3 fuse removed	N/A	N/A	N/A	N/A	N/A	N/A

Note for technologies which have a substantial shut down time this can be added to the 0.5 s in establishing that the trip occurred in less than 0.5 s. Maximum shut down time could therefore be up to 1.0 s for these technologies.

Indicate additional shut down time included in above results.

ms

N/A

Additional comments:

For **Inverter**s tested to BS EN 62116 the following sub set of tests should be recorded in the following table.

Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5 s^3	221ms	215ms	203ms	237ms	229ms	236ms

Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip under positive / negative vector shift.

³ If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.0 Hz	+50 degrees	no trip
Negative Vector Shift	50.0 Hz	- 50 degrees	no trip

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test.

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	no trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	no trip

Limited Frequency Sensitive Mode – Overfrequency test: This test should be carried out in accordance with A.1.2.8. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. The measurement tolerances are contained in A.1.2.8.

Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	9979W	50Hz	630V/10500W	99.79%
Step b) 50.45 Hz ±0.05 Hz	9879W	50.45Hz		98.79%
Step c) 50.70 Hz ±0.10 Hz	9379W	50.7Hz		93.79%
Step d) 51.15 Hz ±0.05 Hz	8479W	51.15Hz		84.79%
Step e) 50.70 Hz ±0.10 Hz	9368.2W	50.7Hz		93.68%
Step f) 50.45 Hz ±0.05 Hz	9865.8W	50.45Hz		98.66%
Step g) 50.00 Hz ±0.01 Hz	9879.8W	50Hz		98.80%
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	5000W	50Hz	630V/10500W	50.00%
Step b) 50.45 Hz ±0.05 Hz	4900W	50.45Hz		49.00%
Step c) 50.70 Hz ±0.10 Hz	4400W	50.7Hz		44.00%
Step d) 51.15 Hz ±0.05 Hz	3500W	51.15Hz		35.00%
Step e) 50.70 Hz ±0.10 Hz	4399.2W	50.7Hz		43.99%
Step f) 50.45 Hz ±0.05 Hz	4891W	50.45Hz		48.91%
Step g) 50.00 Hz ±0.01 Hz	5003W	50Hz		50.03%

		Measured Power Output	Active It	Frequenc	ÿ	Primary	power source		
Test a) 50 H	z ± 0.01 Hz	10000W		50Hz		10500W	,		
Test_b) Poir and 49.6 Hz	nt between 49.5 H	lz 10000W	10000W		0000W 49.5Hz			10500W	
Test c) Point between 47.5 Hz 10000W 47.5 and 47.6 Hz				47.5Hz		10500W	,		
NOTE: The	operating point in T	est (b) and (c) sh	all be m	aintained f	or at least 5	5 minutes			
12000					50).5			
10000					50				
8000					49				
					48				
6000					48				
4000 —									
2000									
.:34 0 :15	57 38 20 20 25 25 25 25	5 1 1 2 3 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	:40 :21 :03	245 26 26 249 25	46 46 23 23 23				
13:59:34	14:00:57 14:01:38 14:02:20 14:03:02 14:03:43 14:04:25 14:05:07	14:05:48 14:06:30 14:07:53 14:07:53 14:08:35 14:09:16 14:09:58	14:10:40 14:11:21 14:12:03	14:12:45 14:13:26 14:14:08 14:14:49	46				
13:59:34 14:00:15	ion timer.	— P — FU			14:15:51 14:16:12 14:16:53	;	for roctoration of		
Re-connect Test should voltage and measured do should be p settings belo	ion timer. prove that the reco frequency to with elay should be pro rovided that the M ow; a statement of ' Measured	P	ce starts ettings o both sh Plant do can be r no recor	after a mi f Table 2. nould be gr pes not rec made.	nimum dela Both the t reater than connect at	ay of 20 s ime delay 20 s to pa the voltag	r setting and th ass. Confirmatio e and frequenc		
Re-connect Test should voltage and measured do should be p settings belo Time delay setting	ion timer. prove that the reco frequency to with elay should be pro rovided that the M ow; a statement of ' Measured delay	P	ce starts ettings o both sh Plant do can be r no recor stage 1	after a mi f Table 2. hould be gr bes not rec made. nnection wi limits of ta	nimum dela Both the t reater than connect at hen voltage able 2.	ay of 20 s ime delay 20 s to pa the voltag	r setting and th iss. Confirmatio e and frequenc ncy is brought t		
Re-connect Test should voltage and measured de should be p settings belo Time delay setting 30S	ion timer. prove that the reco frequency to with elay should be pro rovided that the M ow; a statement of the Measured delay 63S	P — FU onnection sequence in the stage 1 se vided in this form; icro-generating I no reconnection" Checks on just outside At 266.2 V	ce starts ettings o both sh Plant do can be r no recor stage 1 At 180	after a mi f Table 2. nould be gr bes not reo made. nnection wi limits of ta	nimum dela Both the t reater than connect at hen voltage ble 2.	ay of 20 s ime delay 20 s to pa the voltag e or freque	At 52.1 Hz		
Re-connect Test should voltage and measured de should be p settings belo Time delay setting 30S Confirmatior	ion timer. prove that the reco frequency to with elay should be pro rovided that the M ow; a statement of the Measured delay 63S	P — FU onnection sequence in the stage 1 sec vided in this form; icro-generating I no reconnection" Checks on I just outside At 266.2 V cro- Not re-	ce starts ettings o both sh Plant do can be r no recor stage 1 At 180	after a mi f Table 2. hould be gr bes not rec made. nnection wi limits of ta	nimum dela Both the t reater than connect at hen voltage able 2.	ay of 20 s ime delay 20 s to pa the voltag e or freque	At 52.1 Hz		
Re-connect Test should voltage and measured de should be p settings belo Time delay setting 30S Confirmation generator d Fault level o	ion timer. prove that the reco frequency to with elay should be pro rovided that the M ow; a statement of ' Measured delay 63S 63S that the Mid oes not re-connect contribution: Thes nnected) and Anne	P — FU onnection sequence vided in this form; icro-generating I no reconnection" Checks on I just outside At 266.2 V cro- Not re- connect e tests shall be ca	ce starts ettings o both sh Plant do can be r no recor stage 1 At 180 not re-	after a mi f Table 2. nould be gr bes not reo made. nnection wi limits of ta 0.0 V connect in accorda	nimum dela Both the t reater than connect at hen voltage ble 2. At 47.4 Hi not re-cor	ay of 20 s ime delay 20 s to pa the voltag e or freque z nnect REC G98 A	Annex A1 A.1.3.		

ENA Engineering Recommendation G98 Issue 1 Amendment 6 2021

Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	İ _p	N/A	20 ms	44V	11.8A
Initial Value of aperiodic current	A	N/A	100 ms	40V	0.21A
Initial symmetrical short-circuit current*	I _k	N/A	250 ms	40V	0.22A
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500 ms	40V	0.23A
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	0.696s	In seconds

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface (input port)

Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or DC signal (the additional comments box below can be used)YesSelf-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).N/AIt has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator, the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.YesCyber securitySelf Security	reduce the Active Power output Yes
G98 Annex A1 A.1.3.6 (Inverter connected). It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator, the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	in 9.4.3 such as AC or DC signal Yes
the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	t requirements. Refer to EREC N/A
Cyber security	
Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7.	

Additional comments

Logic Interface (input port):

the logic interface will take the form of a simple binary output. When the switch is opened the Microgenerator can operate normally. When the switch is closed the Microgenerator will reduce its Active Power to zero within 5 s. The signal from the Microgenerator that is being switched is DC 5 V.

Cyber security:

We used a communication server with an SSL certificate.